PHYSICS COURSE 2004/2005

9.2 SPACE

INTRODUCTION:

Scientists have drawn on advances in areas such as aeronautics, materials science, robotics, electronics, medicine and energy production to develop viable spacecraft.  Perhaps the most dangerous parts of any space mission are the launch, re-entry and landing.  A huge force is required to propel the rocket a sufficient distance from the earth so that it is able to either escape the earth’s gravitational pull or maintain an orbit.  Following a successful mission, re-entry through the earth’s atmosphere provides further challenges to scientists if astronauts are to return to earth safely.

Rapid advances in technologies over the past fifty years have allowed the exploration of not only the Moon, but also the Solar System and, to an increasing extent, the Universe.  Space exploration is becoming more viable.  Information from research undertaken in space programs has impacted on society through the development of devices such as personal computers, advanced medical equipment, communication satellites and the accurate mapping of natural resources.  Space research and exploration of space increases our understanding of the earth’s own environment, the Solar System and the Universe.

This module increases students’ understanding of the history, nature and practice of physics and the implications for society and the environment.

Gravity and the Gravitational Field

In 1687 Isaac Newton published his Principia Mathematica, in which he explained his three Laws of Motion and his Law of Universal Gravitation.  The Law of Universal Gravitation states:
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where F = the force of gravitational attraction between two masses, m1 and m2 a distance d apart and G = the Universal Gravitational Constant = 6.673 x 10-11 SI Units.  In words this law can be expressed as: The force of attraction between any two bodies in the universe is proportional to the product of their masses and inversely proportional to the square of their distance apart.
Newton’s law suggests that every mass in the universe, no matter how small, has its own gravitational field surrounding it.  The larger the mass, the stronger the gravitational field around it.  This field is a region of influence in which another mass would experience a force due to the presence of the first mass.
Definitions of Mass and Weight:
The mass of an object is a measure of the amount of matter contained in the object.  Mass is a scalar quantity.

The weight of an object is the force due to a gravitational field acting on the object.  Weight is a vector quantity.
The weight, W, of an object is given by Newton’s 2nd Law as:
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where m is the mass of the object and g is the acceleration due to gravity (9.8 ms-2 close to the earth’s surface).

Exercise: Use Newton’s Law of Universal Gravitation equation to determine the acceleration due to gravity on other planets.  Hint – Consider a mass m at rest on the surface of the planet in question and express the weight of the mass m both in terms of the universal gravitation equation and the Newton’s second Law equation F = ma.  Compare the values obtained with those from an appropriate reference (ref. 6 p.96).

Gravitational Potential Energy:
When we lift an object from the ground to a particular height above the ground we must do work against the gravitational field of the earth.  This work goes into increasing the gravitational potential energy of the body.  The amount of work done is equal to the change in gravitational potential energy (GPE) of the body.  For objects near the Earth’s surface, where the acceleration due to gravity is fairly constant, the GPE of an object is given by:




Ep = mgh

where m is the mass of the object, g is the acceleration due to gravity and h the height through which the object is moved vertically.  In this situation we define the ground level to be the zero potential energy level.
For objects a long way from the Earth’s surface, we must use a more general definition:  “The gravitational potential energy of an object is the work done in moving the object from a very large distance away to a point in the gravitational field of the Earth”.  This definition sets the zero of potential energy at an infinite distance from the centre of the Earth.  It leads to the following expression for the gravitational potential energy of a mass m1 as it moves a distance r in a gravitational field due to a mass m2:
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Note that the r in the denominator is NOT squared!  It is also probably very informative to work through the derivation of the above formula.  See separate handout.

Exercise: Determine the GPE for a satellite of mass 200 kg launched from the surface of Mars into an orbit 650 km above the planet’s surface.  (Data: radius of Mars = 3.4 x 106 m, mass of Mars = 6.5 x 1023 kg, G = 6.67 x 10-11 SI Units.  Answer: EP = -2.14 x 109 J)

Equations of Uniformly Accelerated Motion

By starting with some of our basic definitions given in the Moving About topic it can easily be shown that:
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where u = initial velocity, v = final velocity, a = acceleration, s = displacement and t = time.  These three equations are referred to as the equations of uniformly accelerated motion.  They may be used whenever the acceleration is uniform (constant or zero) and the motion is considered in one dimension.  The correct sign must accompany each value as the quantities (except time) are vectors.

Recall also the definitions of velocity and acceleration and the equation:

vav  = (u + v)/2
for average velocity, which applies only when the acceleration is constant.

Projectile Motion

A projectile can be considered to be any object that has been launched or thrown in a particular direction from some point.  If a projectile moves in a gravitational field and gravity is the only force that acts on it, its path or trajectory is that of a parabola.  Since such a path is two-dimensional, it is convenient to resolve the motion into vector components in the horizontal and vertical directions.  The characteristics of these components are as follows:

· Horizontal Motion – a constant velocity motion, the velocity at all times being the same as the horizontal component of the initial velocity.


· Vertical Motion – a uniformly accelerated motion in which the projectile experiences a constant downward acceleration of magnitude g (on earth).

The advantage of resolving the motion into these vector components is that the horizontal and vertical components are completely independent of each other.  Thus, we may apply the equations of uniformly accelerated motion to each component separately and then add the two components together as vectors to obtain the actual motion of the projectile.

The following diagram illustrates this idea.
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Clearly, the horizontal velocity remains constant throughout the motion, as indicated by the horizontal velocity vector staying the same length.  The vertical velocity decreases as the projectile moves upwards, is zero at the maximum height attained by the projectile and then increases again as the projectile returns to the ground.  This is due to the constant downwards acceleration due to gravity.  Note that at any time we can calculate the total velocity by adding the vertical and horizontal vector components together.  The total velocity vectors are tangents to the trajectory.

If we assume the projectile whose trajectory is shown in the diagram above, was launched at velocity v0 at an angle  to the horizontal, we can construct the following vector diagram representing these initial conditions.
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The zero subscripts attached to the velocity vectors denote that this is the initial velocity of the projectile, that is the velocity at time t = o.  Using simple trigonometry we see that:




vyo = vosin




vxo = vocos
Note that these velocities are the initial vertical and horizontal velocities of the projectile.  The velocities at any time t after t = 0 are found by applying the appropriate uniformly accelerated motion equation v = u + at.



vy = vosin gt




vx = vocos    (since vx remains constant)
So the magnitude and direction of the total velocity at any time t is given by:




V = ( (vx2 + vy2)  and  = tan-1(vy / vx)  

where  is the angle made by the total velocity vector and the horizontal.

The displacement of the projectile at any time t is found from s = ut + 0.5at2:




 y = vosint 0.5gt2



 x = vocos.t 
So the magnitude and direction of the total displacement at any time t is given by:




S = ( (x2 + y2)  and  = tan-1(y/x)  

where  is the angle made by the total displacement vector and the horizontal.

The fact that the trajectory of the projectile is a parabola can be shown by using the displacement equations (for y and x) given above and eliminating t from the equations.  This gives the standard equation of a parabola.  Try this as an exercise.

Galileo’s Analysis of Projectile Motion

Our understanding of projectile motion owes a great debt to Galileo, who in his work entitled “Dialogues Concerning Two New Sciences”, presented his classic analysis of such motion.  Galileo argued that projectile motion was a compound motion made up of a horizontal and a vertical motion.  The horizontal motion had a steady speed in a fixed direction, while the vertical motion was one of downwards acceleration.  Using a geometric argument, Galileo went on to show that the path of a particle undergoing such motion was a parabola.

In his work Galileo admits that his assumptions and results are only approximations to the real world.  He admits that due to resistance of the medium, for instance, a projectile’s horizontal motion cannot be truly constant in speed.  He states quite clearly that in reality the path of the projectile will not be exactly parabolic.  He argues, however, that his approximations can be shown by experiment to be close enough to the real world to be of very real use in the analysis of such motion.  In doing this, he became perhaps the first scientist to demonstrate this modern scientific attitude.  His approach was certainly very different from that of the ancient Greek geometers, who were only interested in exact results.  A translation of Galileo’s analysis of projectile motion can be read at:
http://www.phys.virginia.edu/classes/109N/tns244.htm
Escape Velocity

Isaac Newton was the first to propose that objects could be projected from the earth and placed into orbit around the planet.  He suggested that such a projectile would have to be launched horizontally from the top of a very high mountain.  He argued that as the launch velocity was increased, the distance that the projectile would fall before hitting the earth would increase, until eventually, the downward fall of the projectile would be just matched by the earth’s surface falling away.  At this point the projectile would never hit the ground.  This is just the motion, familiar to us now, of a satellite in low earth orbit, which travels at about 8000 m/s.  The diagram below shows Newton’s sketch of the situation.
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Newton proposed a horizontal launch because he realised that any projectile launched at an angle to the horizontal would attempt to follow an elliptical path and would therefore eventually crash back to earth.  He also envisaged that if the launch velocity became too great, the projectile would proceed away from the earth and not return.  Such a launch velocity became known as “escape velocity”.

Today, we define escape velocity, as the velocity at which an object on the surface of a body must be propelled in order not to return to that body under the influence of their mutual gravitational attraction.  There are many equivalent definitions.

By considering the mechanical energy (KE & PE) of an object trying to escape from earth’s gravitational field, it can be shown that the escape velocity, ve, for earth is:
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(see separate sheet for derivation)

where G = the gravitational constant, ME = mass of earth and RE = radius of earth.

Clearly, escape velocity depends on the gravitational constant and the mass and radius of the planet from which the object is to escape.  Earth’s escape velocity works out to be 11.2 km/s.

A Brief Look At Circular Motion

Satellites in low earth orbit or geosynchronous orbit move with uniform circular motion.  This is motion in a circular path at a constant speed.  Obviously, although the speed is constant, the velocity is not, since the direction of the motion is always changing.  It can be shown that for an object executing uniform circular motion (UCM), the acceleration keeping the object in its circular path is given by:




ac = v2/r

where ac is called the centripetal (“centre-seeking) acceleration, v = velocity of the object and r = radius of the circular path.  As the name implies, centripetal acceleration is directed towards the centre of the circle.

Clearly, the centripetal force, Fc, acting on an object undergoing UCM is given by:
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where m = mass of the object.  This force is also directed towards the centre of the circle.

Example: The Australian satellite FedSat has a mass of 58 kg and executes UCM with a speed of 7.46 x 103 m/s at an altitude of 800 km.  Find the centripetal acceleration and the centripetal force acting on this satellite.  (Radius of earth = 6.4 x 106 m.)

From our centripetal acceleration formula above:




 ac = (7.46 x 103)2 / (6.4 x 106 + 800 x 103)




ac =  7.73 m/s2
So, 


Fc = m . ac  =  58 x 7.73 = 448 N

Note that for a satellite, the centripetal force is supplied by the gravitational attraction between the earth and the satellite.  Thus, using our knowledge of circular motion theory and an understanding of Newton’s Law of Universal Gravitation, we can calculate much about the motion of satellites.  For instance we can write that:




[image: image10.wmf]r

mv

r

GMm

2

2

=


where G is the gravitational constant, M = mass of the earth, m = mass of satellite, v = speed of satellite and r = distance of satellite from centre of earth.  This can be used to calculate the velocity of the satellite at any value of r.

Also, the fact that the centripetal acceleration of a satellite is supplied by the gravitational attraction between the earth and the satellite, means that we can write:  





ac = g = v2/r

where g is the acceleration due to gravity at a distance r from the centre of the earth.

Important Features of Rocket Launches

A rocket is a system that undergoes a kind of continuous explosion.  The launch begins with the rocket producing thrust by burning fuel and expelling the resulting hot gases out one end.  These hot gases have a momentum in one direction, and since the total momentum of the rocket-fuel system is zero, the rocket itself has an equal momentum in the opposite direction. Thus, the rocket moves off in the opposite direction to the expelled gases, in accordance with the Law of Conservation of Momentum.

As the launch proceeds, fuel is burnt, gases expelled and the mass of the rocket decreases.  This produces an increase in acceleration, since acceleration is proportional to the applied force (the thrust) and inversely proportional to the mass.  The initial acceleration is small, around 1 m/s2 but continues to build as the mass of the rocket decreases and the atmosphere becomes thinner.  Clearly, as the acceleration of the rocket increases, so too do the forces experienced by the astronauts.
The term “g-forces” is often used to describe the forces acting on pilots and astronauts.  This term describes the size of the force in terms of the acceleration produced.  A g-force of 2g, for instance, is a force that produces acceleration equivalent to 2 times the acceleration due to gravity at the surface of the earth (ie 19.6 m/s2).  Accelerations during a launch can go as high as 10g depending on the type of rocket used.
The Saturn V rockets that were used to launch the Apollo spacecraft stood 110.6 m tall (just less than the height of The Giant Drop at Dreamworld), had a mass of 2.7 million kg and developed a thrust at lift off of about 33.7 million N.  Such rockets produce g-forces as high as 10g on astronauts for several seconds during launch.  The Space Shuttle has an initial mass of about 2 million kg and produces about 31 million N of thrust.  The design of the shuttle engines enables much lower accelerations during the final stages of launch than previous generations of rocket.

During launch an astronaut is seated horizontally in a specially contoured chair.  That is, the astronaut has his/her back and legs below the knees in the horizontal plane.  In this way most of the accelerations the astronaut experiences during launch are directed vertically upwards through his/her well-supported, horizontal back.  Such, so-called transverse accelerations cause much less stress to the body than accelerations applied along the long axis of the body.  Humans can tolerate up to 12g of transverse acceleration without undue discomfort or visual disorders.  Accelerations acting along the long axis of the body can cause serious stress for fairly low g-forces.
A pilot can experience acceleration applied in the direction from the feet to the head.  This results when the pilot pulls out of a steep dive.  The pilot feels heavier and is therefore said to be experiencing positive g-forces.  In this case, the blood is left behind in the feet so to speak.  At 3g to 4g this loss of blood from the head may cause “grey outs” (blurring of vision caused by lack of blood flow in the eyes) or “black outs” (loss of vision) and from 3g to 5g loss of consciousness.

A pilot can also experience acceleration applied in the direction from the head to the feet.  This results when the pilot executes an outside loop or pushover at the start of a dive.  The pilot feels lighter or weightless and is therefore said to be experiencing negative g-forces.  In this case, the blood is left behind in the upper body.  At 3g to 4.5g this accumulation of blood in the upper body can cause red outs (all objects appear red) or loss of vision or unconsciousness.  The average endurable times for tolerating negative g-forces are: 15 seconds at 4.5g and 30 seconds at 3g.

You do not need to be an astronaut or pilot to have experienced positive and negative g-forces.  Any person who has ridden a roller coaster has experienced these effects.  As you pull out of a steep drop or negotiate an inside loop, you experience positive g-forces and feel heavier.  This is a similar feeling to that experienced by astronauts at launch.  As you fall from a height, you experience negative g-forces and feel somewhat weightless.

The final aspect of launching a rocket that we will deal with is the impact that the earth’s orbital motion around the Sun and its rotational motion around its axis has on the launch.  The earth rotates on its own axis in an easterly direction.  At the latitude of NASA’s Cape Canaveral launch site, the speed of rotation is about 400 m/s.  So, it makes good sense to launch a rocket in the easterly direction.  That way, it already has 400 m/s worth of speed in the direction it wishes to go.
To penetrate the dense lower portion of the atmosphere by the shortest possible route, rockets are initially launched vertically from the launch pad.  As the rocket climbs, its trajectory is tilted in the easterly direction by the guidance system to take advantage of the earth’s rotational motion.  Eventually, the rocket is travelling parallel to the earth’s surface immediately below and can then be manoeuvred into earth orbit.

For a spacecraft to go on a mission to another planet, it is first necessary for the spacecraft to achieve escape velocity and to go into its own elliptical orbit around the Sun.  The earth orbits the Sun at about 30 km/s.  Again it makes good sense to use this speed to help a spacecraft achieve escape velocity for trips to other planets.  So, if the spacecraft is to go on a mission to planets beyond the earth’s orbit, it is launched in the direction of earth’s orbital motion and achieves a velocity around the Sun greater than the earth’s 30 km/s.  Thus, the spacecraft’s orbit is larger than that of the earth and is arranged to intersect with the orbit of the planet to which it is heading at a time when the planet will be at that point.  Similarly, if the target is Mercury or Venus, the spacecraft is launched in the opposite direction to the earth’s motion through space.  Then, the spacecraft achieves an escape velocity less than 30 km/s, enters an elliptical orbit around the Sun that is smaller than the earth’s and can thus intercept either planet.

It should be noted that the calculations involved in ensuring that spacecraft are launched at the best possible time to intercept their target are extremely complicated.  One important equation is the familiar Kepler’s Third Law equation:





[image: image11.wmf]2

2

3

4

p

GM

T

r

=


where T = period of satellite around central body, r = distance from centre of central body to satellite, M = mass of central body and G = gravitational constant.  This equation can be used to calculate the period of the spacecraft’s orbit around the Sun, which is one of the important pieces of data in arranging the interception with the target planet.
Satellite Orbits

Satellites are placed in one of several different types of orbit depending on the nature of their mission.  Two common orbit types are “Low Earth Orbit” and “Geostationary Orbit”.  Low Earth Orbit (LEO) is defined to be from 100 to 1000 km above the earth’s surface.  The Space Shuttle uses this type of orbit (200-250 km).  Geostationary Orbit (GEO) is defined as one in which the satellite has a circular orbit in the earth’s equatorial plane with a period of 24 hours. A satellite in such an orbit remains above the same point on the equator at all times.  The following table shows a brief comparison of the features of these two orbits.

	Orbit
	Altitude (km)
	Characteristics
	Applications

	LEO
	100 – 1000
	60 – 90 minute orbit time

Smallest field of view

Frequent coverage of specific or varied locations

Orbits at less than 400 km difficult to maintain due to satellite drag
	Military

Earth Observation

Weather Monitoring

Shuttle Missions

	GEO
	35 800 km
	Allows tracking of stationary point on earth

Largest field of view


	Communications

Mass-media

Weather Monitoring




To achieve and maintain a stable orbit around a planet, a satellite must have a certain velocity.  In general, we define the term orbital velocity to be the velocity required by a satellite to enter and maintain a particular orbit around a celestial object.  If we assume the orbit of the satellite around the celestial object is circular, we can use Kepler’s Third Law (The Law of Periods) to obtain an equation for the orbital velocity of the satellite.  Starting with the Law of Periods equation:
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where T = period of satellite around central body, r = distance from centre of central body to satellite, M = mass of central body and G = gravitational constant, and substituting T = (r / v)  for T, we obtain:
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where v = orbital velocity of the satellite.

Note that satellites in Low Earth Orbit experience friction as they move through or skim across the top of the very thin atmosphere at LEO altitudes.  This frictional effect is called atmospheric (or satellite) drag.  This causes a satellite to slow down and lose altitude.  This loss of altitude is referred to as Orbital Decay.

EXERCISE: Determine the orbital speed of the Earth around the Sun, given that the mass of the Sun is 1.989 x 1030 kg, the radius of Earth’s orbit around the Sun is 149.6 x 106 km and the gravitational constant is 6.67 x 10-11 SI Units.  (v = 29.8 km/s)
Factors Affecting Re-Entry

The term “re-entry” applied to rockets refers to the return of a spacecraft into the earth’s atmosphere and subsequent descent to earth.  Perhaps the most important issues associated with safe re-entry are:

· How to handle the intense heat generated as the spacecraft enters the earth’s atmosphere; and


· How to keep the g-forces of deceleration within safe limits.

On re-entry, friction between the spacecraft and the earth’s atmosphere generates a great deal of heat.  Early spacecraft such as NASA’s Mercury, Gemini & Apollo capsules, used heat shields made from what was called an ablative material that would burn up on re-entry and protect the crew from the high temperatures.  The Space Shuttle uses an assortment of materials to protect its crew from the intense heat.  Reinforced carbon-carbon composite, low and high temperature ceramic tiles and flexible surface insulation material all play important protective roles in appropriate positions on the Shuttle.

It would be wonderful if a spacecraft could re-enter the atmosphere vertically.  Unfortunately, the thick, bottom section of our atmosphere that is used to effectively slow the spacecraft to safe landing speed is not sufficiently thick (~ 100 km) to allow for vertical re-entry.  So, the spacecraft is forced to re-enter at an angle to the horizontal of between 5.2o and 7.2o.  This small angular corridor is called the re-entry window.  If the astronauts re-enter at too shallow an angle, the spacecraft will bounce off the atmosphere back into space.  If the astronauts re-enter at too steep an angle, both the g-forces and the heat generated will be too great for the crew to survive.

Gravity-Assisted Trajectories (Slingshot Effect)

Sometimes the gravitational fields of planets can be used to increase the speed of spacecraft relative to the Sun and thus reduce travel times and minimise fuel and energy demands.  Such spacecraft are said to be on “gravity-assist trajectories” and the whole process is often referred to as the “slingshot” effect.  Essentially, the spacecraft moves behind the planet as viewed from the Sun, and is accelerated by this moving gravity field, much as a surfer is pushed forward by a wave.  The energy gained by the spacecraft does not actually come from the gravitational field but from the kinetic energy of the moving planet, which is slowed by a tiny amount in its orbit, causing it to drop very slightly closer to the Sun.

Let us consider the example of the Cassini spacecraft to Saturn.  On its long voyage, Cassini boosted its speed by passing close to Venus, Earth and Jupiter.  With each flyby its orbit was adjusted until it gained sufficient speed relative to the Sun to reach Saturn.  At that point NASA adjusted its velocity to put it into orbit.

More detail on this topic is available at my Website on both the Space page and the Useful Links page.

INTRODUCTION TO RELATIVITY

Relativity is the study of the relative motions of objects.  Einstein’s Theory of Relativity is one of the greatest intellectual achievements of the 20th Century.  Special Relativity, developed by Einstein in 1905, deals with systems that are moving at constant velocity (no acceleration) with respect to each other.  General Relativity proposed in 1916 deals with systems that are accelerating with respect to each other.  Before commencing our study of Relativity some preliminary definitions are necessary.

Reference Frames:

A reference frame can be considered to be a set of axes with respect to which distance measurements can be made.  A set of recording clocks can be considered to be embedded in the frame to specify time.

An inertial reference frame is defined as one in which Newton’s First Law (his law of inertia) is valid.  In other words, an inertial reference frame is one that is not accelerating.

A non-inertial reference frame is one that is accelerating.

An Event:

A physical event can be considered to be something that happens independently of the reference frame used to describe it – eg lightning flashes.  An event can be characterized in a Cartesian reference frame by stating its coordinates x, y, z and t.

Brief History of Relativity Before Einstein

The phenomenon of motion has been studied for thousands of years.  To the ancient Greek philosopher Aristotle it was obvious that objects would assume a preferred state of rest unless some external force propelled them.  He also believed in the concepts of Absolute Space and Absolute Time – that is that both space and time exist in their own right, independently of each other and of other material things (1, 2 & 3).  Thus, to Aristotle it was possible to assign absolute values of position and time to events.  Aristotle’s work was held in such high regard that it remained basically unchallenged until the end of the sixteenth century, when Galileo showed that it was incorrect.

The view that motion must be relative – that is, it involves displacements of objects relative to some reference system – had its beginnings with Galileo.  Galileo’s experiments and “thought experiments” led him to state what is now called the Principle of Galilean Relativity: the laws of mechanics are the same for a body at rest and a body moving at constant velocity.

Using Galileo’s measurements as a starting point Isaac Newton developed his Laws of Motion and his Law of Universal Gravitation.  Newton showed that it is only possible to determine the relative velocity of one reference frame with respect to another and not the absolute velocity of either frame.  So, as far as mechanics is concerned, no preferred or absolute reference frame exists.  The Principle of Newtonian Relativity may be stated as: the laws of mechanics must be the same in all inertial reference frames.

Thus, due to Galileo and Newton, the concept of Absolute Space became redundant since there could be no absolute reference frame with respect to which mechanical measurements could be made.  However, Galileo and Newton retained the concept of Absolute Time, or the ability to establish that two events that happened at different locations occurred at the same time (1).  In other words, if an observer in one reference frame observed two events at different locations as occurring simultaneously, then all observers in all reference frames would agree that the events were simultaneous.

The Newtonian concept of the structure of space and time remained unchallenged until the development of the electromagnetic theory in the nineteenth century, principally by Michael Faraday and James Clerk Maxwell.  Maxwell showed that electromagnetic waves in a vacuum ought to propagate at a speed of  c = 3 x 108 m/s, the speed of light (1).  To 19th Century physicists this presented a problem.  If EM waves were supposed to propagate at this fixed speed c, what was this speed measured relative to?  How could you measure it relative to a vacuum?  Newton had done away with the idea of an absolute reference frame (2).

Quite apart from the relativity problem, it seemed inconceivable to 19th Century physicists that light and other EM waves, in contrast to all other kinds of waves, could propagate without a medium.  It seemed to be a logical step to postulate such a medium, called the aether (or ether), even though it was necessary to assume unusual properties for it, such as zero density and perfect transparency, to account for its undetectability.  This aether was assumed to fill all space and to be the medium with respect to which EM waves propagate with the speed c.  It followed, using Newtonian relativity, that an observer moving through the aether with velocity u would measure a velocity for a light beam of (c + u) (5).  So theoretically, if the aether exists, an observer on earth should be able to measure changes in the velocity of light due to the earth’s motion through the aether.  The Michelson-Morley experiment attempted to do this.
The Aether Model for the Transmission of Light

Before moving onto the Michelson-Morley experiment, we pause to examine in more detail the features of the aether model for the transmission of light.  When 19th Century physicists chose the aether as the medium for the propagation of EM waves they were merely borrowing and adapting an existing concept.

The fact that certain physical events propagate themselves through astronomic space led long ago to the hypothesis that space is not empty but is filled with an extremely fine substance, the Aether, which is the carrier or medium of these phenomena.  Indeed the aether was proposed as the carrier of light in Rene Descartes’ Dioptrics, which in 1638 became the first published scientific work on optics (4).  In this work, Descartes proposed that the aether was all-pervasive and made objects visible by transmitting a pressure from the object to the observer’s eye.

Robert Hooke in 1667 developed pressure wave theories that allowed for the propagation of light (6).  In these theories, luminous objects set up vibrations that were transmitted through the aether like sound waves through air.

The Dutchman Christiaan Huygens published a full theory on the wave nature of light in 1690.  According to Huygens, light was an irregular series of shock waves that proceeded with great velocity through a continuous medium – the luminiferous aether.   This aether consisted of minute elastic particles uniformly compressed together.  The movement of light through the aether was not an actual transfer of these particles but rather a compression wave moving through the particles.  It was thought that the aether particles were not packed in rows but were irregular in their orientation so that a disturbance at one particle would radiate out from it in all directions (6).
In 1817 the French engineer Augustine Fresnel and the English scientist Thomas Young independently deduced that light was a transverse wave motion.  This required a rethink of the nature of the aether, which until this time had been considered by most scientists to be a thin fluid of some kind.  Transverse waves can only travel through solid media (or along the surface of fluids).  Clearly, the aether had to be a solid.  The solid also had to be very rigid to allow for the high velocity at which light travelled (4).

Clearly, this posed a problem, since such a solid would offer great resistance to the motion of the planets and yet no such resistance had been noted by astronomers.  In 1845 George Stokes attempted to solve the dilemma by proposing that the aether acted like pitch or wax which is rigid for rapidly changing forces but is fluid under the action of forces applied over long periods of time.  The forces that occur in light vibrations change extremely quickly (600 x 1012 times per second) compared with the relatively slow processes that occur in planetary motions.  Thus, the aether may function for light as an elastic solid but give way completely to the motions of the planets (4).

In 1865 the great Scottish physicist James Clerk Maxwell published his theory of electromagnetism, which summarised the basic properties of electricity and magnetism in four equations.  Maxwell also deduced that light waves are electromagnetic waves and that all electromagnetic waves travelled at 3 x 108 m/s relative to the aether.  The aether was now called the electromagnetic aether rather than the luminiferous aether (4) and became a kind of absolute reference frame for electromagnetic phenomena.
The Michelson-Morley Experiment

In 1887 Albert Michelson and Edward Morley of the USA carried out a very careful experiment at the Case School of Applied Science in Cleveland.  The aim of the experiment was to measure the motion of the earth relative to the aether and thereby demonstrate that the aether existed.  Their method involved using the phenomenon of the interference of light to detect small changes in the speed of light due to the earth’s motion through the aether (5).
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The whole apparatus is mounted on a solid stone block floating in a bath of mercury.  The earth, together with the apparatus is supposed to be travelling through the aether with a uniform velocity u of about 30 km/s.  This is equivalent to the earth at rest with the aether streaming past it at a velocity –u.

Now in the experiment a beam of light from the source S is split into two beams by a half-silvered mirror K as shown.  One half of the beam travels from K to M1 and is then reflected back to K, while the other half is reflected from K to M2 and then reflected from M2 back to K.  At K part of the beam from M1 is reflected to the observer O and part of the beam from M2 is transmitted to O.

Although the mirrors M1 and M2 are the same distance from K, it is virtually impossible to have the distances travelled by each beam exactly equal, since the wavelength of light is so small compared with the dimensions of the apparatus.  Thus, the two beams would arrive at O slightly out of phase and would produce an interference pattern at O.

There is also a difference in the time taken by each beam to traverse the apparatus and arrive at O, since one beam travels across the aether stream direction while the other travels parallel and then anti-parallel to the aether stream direction (see the note below).  This difference in time taken for each beam to arrive at O would also introduce a phase difference and would thus influence the interference pattern.

Now if the apparatus were to be rotated through 90o, the phase difference due to the path difference of each beam would not change.  However, as the direction of the light beams varied with the direction of flow of the aether, their relative velocities would alter and thus the difference in time required for each beam to reach O would alter.  This would result in a change in the interference pattern as the apparatus was rotated.
The Michelson-Morley apparatus was capable of detecting a phase change of as little as 1/100 of a fringe.  The expected phase change was 4/10 of a fringe.  However, no such change was observed.

Thus, the result of the Michelson-Morley experiment was that no motion of the earth relative to the aether was detected.  Since the experiment failed in its objective, the result is called a null result.  The experiment has since been repeated many times and the same null result has always been obtained.

NOTE:  This time difference mentioned above comes about from classical vector work.  After the original beam is split at K the half transmitted to M1 travels with velocity (c + u) relative to the “stationary” earth, as it is travelling in the direction of “flow” of the aether.  When it is reflected from M1 it travels towards K with a velocity relative to the earth of (c – u) against the motion of the aether stream.  Thus, the time taken for the total journey of this beam from K to M1 and back again is:
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However, the other beam travels with velocity ( (c2 – u2) towards M2 and then with the same speed in the opposite direction away from M2 after reflection.
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Thus, the time for the total journey of the beam from K to M2 and back again is:
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Clearly, t1 and t2 are different.

The Role of The Michelson-Morley Experiment

The Michelson-Morley experiment is an excellent example of a critical experiment in science.  The fact that no motion of the earth relative to the aether was detected suggested quite strongly that the aether hypothesis was incorrect and that no aether (absolute) reference frame existed for electromagnetic phenomena.  This opened the way for a whole new way of thinking that was to be proposed by Albert Einstein in his Theory of Special Relativity.

It is worth noting that the null result of the Michelson-Morley experiment was such a blow to the aether hypothesis in particular and to theoretical physics in general that the experiment was repeated by many scientists over more than 50 years.  A null result has always been obtained.

Although many attempts were made to save the aether hypothesis (see my Website for details if you wish), eventually, physicists like Lorentz (1899), Larmor (1900) and Poincare (1905) showed that the changes needed to make the aether hypothesis consistent with the null result of the Michelson-Morley experiment implied that the aether (absolute) reference frame was impossible.  The aether ceased to exist as a real substance (4).

Principle of Relativity

A relativity principle is a statement of what the invariant quantities are between different reference frames.  It says that for such quantities the reference frames are equivalent to one another, no one having an absolute or privileged status relative to the others.  So, for example, Newton’s relativity principle tells us that all inertial reference frames are equivalent with respect to the laws of mechanics.

As we have seen, for quite a while in the 19th Century it looked as if there was a preferred or absolute reference frame (the aether) as far as the laws of electromagnetism were concerned.  However, in 1904 Henri Poincare proposed his Principle of Relativity: “The laws of physics are the same for a fixed observer as for an observer who has a uniform motion of translation relative to him”.  Note that this principle applies to mechanics as well as electromagnetism.  Although his principle acknowledged the futility in continued use of the aether as an absolute reference frame, Poincare did not fully grasp the implications.  Poincare still accepted the Newtonian concept of absolute time.  Einstein abandoned it.

Einstein’s Theory of Special Relativity

In 1905, Albert Einstein published his famous paper entitled: “On the Electrodynamics of Moving Bodies”, in which he proposed his two postulates of relativity and from these derived his Special Relativity Theory.  Einstein’s postulates are:

1. The Principle of Relativity – All the laws of physics are the same in all inertial reference frames – no preferred inertial frame exists.

2. The Principle of the Constancy of the Speed of Light – The speed of light in free space has the same value c, in all inertial frames, regardless of the velocity of the observer or the velocity of the source emitting the light.
The significance of the first postulate is that it extends Newtonian Relativity to all the laws of physics not just mechanics.  It implies that all motion is relative – no absolute reference frame exists.  The significance of the second postulate is that it denies the existence of the aether and asserts that light moves at speed c relative to all inertial observers.  It also predicts the null result of the Michelson-Morley experiment, as the speed of light along both arms of the interferometer will be c.

Perhaps the greatest significance of the second postulate, however, is that it forces us to re-think our understanding of space and time.  In Newtonian Relativity, if a pulse of light were sent from one place to another, different observers would agree on the time that the journey took (since time is absolute), but would not always agree on how far the light travelled (since space is not absolute).  Since the speed of light is just the distance travelled divided by the time taken, different observers would measure different speeds for light.  In Special Relativity, however, all observers must agree on how fast light travels.  They still do not agree on the distance the light has travelled, so they must therefore now also disagree over the time it has taken.  In other words, Special Relativity put an end to the idea of absolute time (2).

Clearly, since c must remain constant, both space and time must be relative quantities.

Simultaneity

Let us consider a “thought experiment” (Gedanken) to illustrate that time is relative.  Imagine two observers O and O’standing at the midpoints of their respective trains (reference frames) T and T’.  T’ is moving at a constant speed v with respect to T.  Just at the instant when the two observers O and O’ are directly opposite each other, two lightning flashes (events) occur simultaneously in the T frame, as shown below.  The question is, will these two events appear simultaneous in the T’ frame?
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From our T reference frame, it is clear that observer O’ in the T’ frame moves to the right during the time the light is travelling to O’ from A’ and B’.  At the instant that O receives the light from A and B, the light from B’ has already passed O’, whereas the light from A’ has not yet reached O’.  O’ will thus observe the light coming from B’ before receiving the light from A’.  Since the speed of light along both paths O’A’ and O’B’ is c (according to the second postulate), O’ must conclude that the event at B’ occurred before the event at A’.  The two events are not simultaneous for O’, even though they are for O.

We can thus conclude that two events that are simultaneous to one observer are not necessarily simultaneous to a second observer.  Moreover, since there is no preferred reference frame, either description is equally valid.  It follows that simultaneity is not an absolute concept, but depends on the reference frame of the observer.

Length Contraction

When measuring the length of an object it is necessary to be able to determine the exact position of the ends of the object simultaneously.  If, however, observers in different reference frames may disagree on the simultaneity of two events, they may also disagree about the length of objects.

In fact, using Special Relativity theory, it is possible to show mathematically and to demonstrate experimentally that the length of a moving rod appears to contract in the direction of motion relative to a “stationary” observer.  This is described by the Lorentz-Fitzgerald Contraction Equation:
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where l is the moving length, l0 is the rest length (or proper length) and v is the velocity of the rod relative to the stationary observer.  Note that this contraction takes place in the direction of motion only.  So, for example, an observer on earth watching a rectangular spacecraft move past the earth in the horizontal plane would observe the horizontal length of the craft to be contracted but the vertical width of the craft to remain the same as seen by the observer on the rocket.  (Note that this is an over simplification.  Three dimensional objects travelling at relativistic speeds relative to a given reference frame will appear to be distorted in other ways as well, to an observer at rest in that frame.  This is outside the scope of this course.)

Time Dilation

Let us consider another thought experiment.  Imagine a “light clock”, as shown below.  Time is measured by light bouncing between two mirrors.  This clock ticks once for one complete up and down motion of the light.
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The light clock is placed in a rocket that travels to the right at a constant speed v with respect to a stationary observer on earth.  When viewed by an observer travelling with the clock, the light follows the path shown in (a) above.  To the stationary observer on earth, who sees the clock moving past at a constant speed, the path appears as in (b) above.

From (a), the time taken for light to make one complete trip up and down, t0, is




t0 = 2.L / c

- (1)

Remember that this represents one tick or one second on the light clock as seen by the observer moving with the clock.  From (b), the distance the light moves between A and B is c.tAB, and the distance moved by the whole clock in time tAB is v. tAB.

So, by Pythagoras’ Theorem:




(c.tAB )2 = (v.tAB )2  +  L2
and therefore:

tAB 2  =  L2 / (c2 – v2)

which can then be re-arranged (divide throughout RHS by c2 and take the square root) to give:




tAB   =  (L/c)  /  ( 1 – (v2/c2) 

and thus, the total time taken by the light for one complete up and down motion is:




tABC   =  (2L/c)  /  ( 1 – (v2/c2) 

But from (1) above:
t0 = 2.L / c
And so we have:
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Clearly, the time interval corresponding to one tick of the light clock is larger for the observer on earth than for the observer on the rocket, since the denominator on the RHS of the above equation is always less than 1.

The above equation may be interpreted as meaning that the time interval t for an event to occur, measured by an observer moving with respect to a clock is longer than the time interval t0 for the same event, measured by an observer at rest with respect to the clock.  An alternative way of stating this is that clocks moving relative to an observer are measured by that observer to run more slowly than clocks at rest with respect to that observer.  That is, time in a moving reference frame appears to go slower relative to a “stationary” observer.  This result is called time dilation.  The time interval t0 is referred to as the proper time.  The proper time, t0, is always the time for an event as measured by the observer in the moving reference frame (Ref 5 pp.63-64).

An example is probably a good idea at this stage.  Consider a rocket travelling with a speed of 0.9c relative to the earth.  If an observer on the rocket records a time for a particular event as 1 second on his clock, what time interval would be recorded by the earth observer?

From our time dilation equation we have:




t  =  1 / ( 1 – [(0.9c)2/c2]

t  =  2.29 s
So, to an observer on earth, the time taken for the event is 2.29s.  The earth observer sees that the rocket clock has slowed down.  It is essential that you understand that this is not an illusion.  It makes no sense to ask which of these times is the “real” time.  Since no preferred reference frame exists both times are as real as each other.  They are the real times seen for the event by the respective observers.

Time dilation tells us that a moving clock runs slower than a clock at rest by a factor of  1/( 1 – (v2/c2).  This result, however, can be generalised beyond clocks to include all physical, biological and chemical processes.  The Theory of Relativity predicts that all such processes occurring in a moving frame will slow down relative to a stationary clock.

Experimental Evidence for Time Dilation (Non-Examinable)

The validity of time dilation has been confirmed experimentally many times.  One of these experiments involves the study of the behaviour of particles called muons, which are produced by collisions in the earth’s upper atmosphere.  When measured in their own rest frame they have a lifetime of 2.2 s.  Their speed can reach as high as 0.99c, which would enable them to travel about 650 m before decaying.  Clearly, this distance is not sufficient to allow the muons to reach the surface of the earth and yet muons are found in plentiful supply even in mine shafts beneath the earth’s surface.  The explanation is provided by time dilation.  The lifetime of muons with a speed of 0.99c is dilated to about 16 s in the earth’s reference frame.  This much time allows the muons to travel close to 5 km in the earth’s reference frame – sufficient to reach the ground.  (Remember though, if you could think of a muon carrying a clock along with it, then this clock would record the normal muon life span of 2.2 s.)

The Twin Paradox (Non-Examinable)

The Twin Paradox is another example of a thought experiment in relativity.  Consider two twins.  Twin A takes a trip in a rocket ship at constant speed v relative to the earth to a distant point in space and then returns, again at the constant speed v.  Twin B remains on earth the whole time.  According to Twin B, the travelling twin will have aged less, since his clock would have been running slowly relative to Twin B’s clock and would therefore have recorded less time than Twin B’s clock.  However, since no preferred reference frame exists, Twin A would say that it is he who is at rest and that the earth twin travels away from him and then returns.  Hence, Twin A will predict that time will pass more slowly on earth, and hence the earth twin will be the younger one when they are re-united.  Since they both cannot be right, we have a paradox.

To resolve the paradox we need to realise that it arises because we assume that the twins’ situations are symmetrical and interchangeable.  On closer examination we find that this assumption is not correct.  The results of Special Relativity can only be applied by observers in inertial reference frames.  Since the earth is considered an inertial reference frame, the prediction of Twin B should be reliable.  Twin A is only in an inertial frame whilst travelling at constant velocity v.  During the intervals when the rocket ship accelerates, to speed up or slow down, the reference frame of Twin A is non-inertial.  The predictions of the travelling twin based on Special Relativity during these acceleration periods will be incorrect.  General Relativity can be used to treat the periods of accelerated motion.  When this is done, it is found that the travelling twin is indeed the younger one.

Note that the only way to tell whose clock has actually been running slowly is to bring both clocks back together, at rest on earth.  It is then found that it is the observer who goes on the round trip whose clock has actually slowed down relative to the clock of the observer who stayed at home.

Relativity and Space Travel

Time dilation and length contraction have raised considerable interest in regard to space travel.  Consider the following thought experiment.  Imagine that adventurous Eva goes on an excursion to Alpha Centauri in a space ship at 0.9c.  Her friend Nigel stays behind on earth.  Nigel knows that –Centauri is 4.3 light years away and so calculates the time for the trip as 4.8 years.  Allowing for a brief stop over (shopping etc) when Eva gets there, Nigel expects that Eva will be back in about 10 years.

Travelling at 0.9c, Eva measures the distance between earth and –Centauri to be contracted to 1.87 light years and thus calculates the time for the trip as 2.1 years.  Thus, she expects to be back on earth in a little over 4 years.

Clearly, this 2.1 years of rocket time must be equivalent to 4.8 years of earth time, since both observers must observe the laws of physics to be the same.  (Note: We are ignoring the brief periods of acceleration required by Eva.)  This equivalence can be checked using the time dilation equation.

When Eva arrives back on earth she finds that she has indeed aged a little over four years, whilst poor Nigel is nearly 10 years older than when she left.  (Perhaps the rare, carnivorous, –Centaurian wolfhound that Eva has bought for Nigel will soothe the upset.)

Seriously, though, the closer v gets to c, the closer the distance to –Centauri and the time required to get there get to zero as seen by Eva.  Obviously, the minimum time for the journey as seen by Nigel is 4.3 years.  So, if Eva travels the distance in 1 s, then 1 s of her time is equivalent to 4.3 years of Nigel’s (earth) time.  If Eva travelled for 1 hour at this very high speed, (3600 x 4.3) years or 15480 years would elapse on earth.  If Eva travelled for a whole year on the rocket at this high speed, 135 million years would pass on earth.

While time dilation and length contraction overcome one of the great difficulties of space travel, problems obviously remain in producing such high speeds.

The Mass-Energy Relationship

Another aspect of the Special Relativity theory is that the mass of a moving object is greater than when it is stationary.  In fact, the higher the velocity of the object, the more massive it becomes.  This is called Mass Dilation and is represented mathematically as:
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where m = relativistic mass of particle, m0 = rest mass of particle, v is the velocity of the particle relative to a stationary observer and c = speed of light.

The interesting question is of course, from where does this extra mass come?

Using relativistic mechanics it can be shown that the kinetic energy of a moving body makes a contribution to the mass of the body.  It turns out that mass = energy/c2 or in a more recognizable form:




E = mc2
This is Einstein’s famous equation.  Einstein originally derived this equation by using the idea that radiation exerts a pressure on an absorbing body.

This equation states the equivalence of mass and energy.  It establishes that energy can be converted into mass and vice versa.  For example, when a particle and its antiparticle collide, all the mass is converted into energy.  Mass is converted into energy in nuclear fission.  When a body gives off energy E in the form of radiation, its mass decreases by an amount equal to E/c2.

In Special Relativity, the Law of Conservation of Energy and the Law of Conservation of Mass have been replaced by the Law of Conservation of Mass-Energy.

Note that the fact that mass increases as a body gains velocity effectively limits all man-made objects to travel at speeds lower than the speed of light.  The closer a body gets to the speed of light, the more massive it becomes.  The more massive it becomes, the more energy that has to be used to give it the same acceleration.  To accelerate the body up to the speed of light would require an infinite amount of energy.   Clearly, this places a limit on both the speed that can be attained by a spacecraft and therefore the time it takes to travel from one point in space to another.

Four Dimensional Space Time (Non-Examinable)

The Theory of Special Relativity shows that space and time are not independent of one another but are intimately connected.  See my Website for details on the concept of space-time, if you are interested.
A New Standard of Length

Length is one of the fundamental quantities in Physics because its definition does not depend on other physical quantities.  The SI unit of length, the metre was originally defined as one ten-millionth of the distance from the equator to the geographic North Pole (6).  The first truly international standard of length was a bar of platinum-iridium alloy called the standard metre and kept in Paris.  The bar was supported mechanically in a prescribed way and kept in an airtight cabinet at 0o C.  The distance between two fine lines engraved on gold plugs near the ends of the bar was defined to be one metre (7).

In 1961 an atomic standard of length was adopted by international agreement.  The metre was defined to be 1 650 763.73 times the wavelength of the orange-red light from the isotope krypton-86.  This standard had many advantages over the original – increased precision in length measurements, greater accessibility and greater invariability to list a few (7).

In 1983 the metre was re-defined in terms of the speed of light in a vacuum.  The metre is now defined as the distance light travels in a vacuum in 1/299792458 of a second as measured by a cesium clock (2 & 6).  Since the speed of light is constant and we can measure time more accurately than length, this standard provides increased precision over previous standards.  The reason for that particular fraction (1/299792458) is that the standard then corresponds to the historical definition of the metre – the length on the bar in Paris.  So, our current standard of length is actually defined in terms of time in contrast to the original standard metre, which was defined directly in terms of length (distance).
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PROJECTILE MOTION QUESTIONS
1 A football is kicked with a speed of 25 m/s at an angle of 30o to the horizontal.  Neglecting air resistance determine:


(a) The time of flight for the football.  (2.55 s)

(b) The maximum height reached by the football.  (7.97 m)


(c) The horizontal range of the football.  (55.2 m)



2 A crate of supplies for a scientific expedition to Greenland is being dropped by plane.  When the supplies are dropped, the plane is travelling at 40 m/s horizontally at a height of 50 m.  Sadly the parachute fails to open and the package falls to the ground at 9.8 m/s2.  Find the horizontal distance travelled by the package as it falls given that it hits the ground right at the feet of the scientific party.  (127.8 m)



3 A stone is thrown horizontally from the top of a vertical cliff.  Given that the initial velocity of the stone is 20 m/s and that it hits the horizontal ground below the cliff 3 seconds later, calculate:


(a) The horizontal distance travelled by the stone from the foot of the cliff.  (60 m)


(b) The height of the cliff.  (44.1 m)


(c) The velocity of the stone just before it hits the ground.  (35.6 m/s at an angle of 55.8o below the horizontal)




EXTENSION QUESTION


4 A stone is thrown vertically upwards with a velocity of 29.4 m/s from the edge of a cliff 78.4 m high.  The stone falls so that it just misses the edge of the cliff and falls to the ground at the foot of the cliff.  Determine the time taken by the stone to reach the ground.  (8 s)


SPACE TOPIC PROBLEMS I

1 Use Newton’s Law of Universal Gravitation equation to determine the acceleration due to gravity on Mercury, Saturn & Pluto to one decimal place.  Hint – Consider a mass m at rest on the surface of the planet in question and express the weight of the mass m both in terms of the universal gravitation equation and the Newton’s second Law equation F = ma.  Data: Mercury – mass = 3.4 x 1023kg, radius = 2.4 x 106m;  Saturn – mass = 5.7 x 1026kg, radius = 6.1 x 107m; Pluto – mass = 3.6 x 1023kg, radius = 3.0 x 106m. (3.9 m/s2, 10.2 m/s2, 2.7 m/s2)


2 Using the value of g calculated for Mercury in question 1, determine the weight force for a body of 65 kg on Mercury and compare this to the weight force for the same body on Earth.  What is the mass of the body on each planet?  (W = 253.5 N on Mercury & 637 N on Earth; Mass = 65 kg on each planet.)


3 A projectile is launched at an angle of 45o to the horizontal and just clears a fence 6 m high at a horizontal distance of 100 m from the launch site.  Determine the velocity at which the projectile was launched.  (32.3 m/s)


4 Explain why the acceleration of the Space Shuttle increases during the initial periods of launch.  Describe any effect this increase in acceleration may have on the astronauts.


5 Identify data sources, gather, analyse and present information on the contribution to the development of space exploration of ONE of the following:

Tsiolkovsky, Oberth, Goddard, Esnault-Pelterie, O’Neill or von Braun.


6 The OPTUS satellites occupy geostationary orbits around the earth.


(a) Explain the meaning of the term “geostationary orbit”.


(b) Given that the mass of the earth is 5.976 x 1024 kg and that the universal gravitational constant, G = 6.673 x 10-11 SI units, calculate the radius of the orbit of an OPTUS satellite in kilometres.  (4.2247 x 104 km)


(c) If the earth’s radius is 6370 km, determine the altitude of an OPTUS satellite orbit in kilometres.  (3.5877 x 104 km)


(d) If an OPTUS satellite has a mass of 70 kg determine the centripetal force acting on the satellite as it undergoes circular motion around the earth with an orbital velocity of 3067 m/s.  (15.6 N)

SPACE TOPIC PROBLEMS II

1 Describe an experiment that you could perform in a reference frame to determine whether or not the frame was non-inertial.



2 A spacecraft is travelling at 0.99c.  An astronaut inside the craft records a time of 1 hour for a certain event to occur.  How long would an observer stationary relative to the craft record for this event?  (7.09 h)



3 A missile travelling at 9/10 the speed of light has a rest length of 10 m.  Calculate the length of the moving missile as measured by a stationary observer directly under the flight path of the missile.  (4.36 m)



4 An electron with a rest mass of 9.11 x 10-31 kg is travelling at 0.999c.  Determine the relativistic mass of the electron.  (2.04 x 10-29 kg)



5 A particular radioactive isotope loses 5 x 102 J of energy.  Calculate its resultant loss of mass.  (5.6 x 10-15 kg)



6 The radius of our galaxy is 3 x 1020 m, or about 3 x 104 light years.


(a) Can a person, in principle, travel from the centre to the edge of our galaxy in a normal lifetime?  Explain using either time dilation or length contraction arguments.


(b) Determine the constant velocity that would be needed to make the journey in 30 years (proper time).  (299999850 m/s or 0.9999995c)


7 A new EFT (extremely fast train) is travelling along the tracks at the speed of light relative to the earth’s surface.  A passenger is walking towards the front of the train at 5 m/s relative to the floor of the train.  Clearly, relative to the earth’s surface, the passenger is moving faster than the speed of light.  Analyse this situation from the point of view of Special Relativity.


PROJECTILE MOTION EQUATIONS

Complete the following table by writing the correct projectile motion equations for the horizontal & vertical components of velocity and displacement starting with the three basic equations of uniformly accelerated motion given at the top of each column.  In each cell of the table there is room for two equations.  For equation 1 in each cell, write the equation using symbols chosen from the following: ux = initial horizontal velocity, uy = initial vertical velocity, vx = final horizontal velocity, vy = final vertical velocity, x = horizontal displacement (range), y = vertical displacement (height), ax = horizontal acceleration, ay = vertical acceleration and t = time.  For equation 2 in each cell, write the equation using: ux = v0 cos, uy = v0 sin, ay = - g and ax = 0.

	EQUATION


	v = u + at
	v2 = u2 + 2as
	s = ut + 0.5at2

	Horizontal

Component
	1.

2.


	1.

2.


	1.

2.



	Vertical

Component
	1.

2.


	1.

2.


	1.

2.
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